

EGFR Mutation Analysis (Droplet Digital PCR)

EGFR mutations has been identified in 50% of lung adenocarcinoma in East Asian patients. Patients with tumors harboring sensitizing EGFR mutations are responsive to 1st generation tyrosine kinase inhibitors (TKIs) such as erlotinib (Tarceva®). However, most patients receiving EGFR TKIs are susceptible to development of resistant mutations, predominately secondary point mutation in exon 20 of EGFR (T790M).

The *EGFR* Mutation Analysis test uses a method called digital droplet PCR (ddPCR) for ultra-sensitive detection of *EGFR* mutations, including EGFR TKI sensitizing mutations (Exon 19 del, and Exon 21 L858R), as well as resistance mutation (Exon 20 T790M).

The test is based on accumulated evidence that *EGFR* mutations matching those in tumours are present in bodily fluids (such as blood) in minute quantities, and that ultra-sensitive methods can be used to detect them in many instances.

Ultra-sensitivity for detection of EGFR sensitizing mutations

	Sensitivity	Specificity	Concordance*
Sensitizing mutations (Exon 19 del and L858R)	95.9%	100%	98.8%

Analytical performance of ddPCR (EGFR sensitizing mutations)¹

*Concordance with tumor EGFR mutation status

ddPCR: Highest sensitivity & accuracy for EGFR T70M detection

Performance of different plasma (EGFR T790M) assays² in AURA study

	Cobas EGFR mutation test	Therascreen EGFR ARMS PCR	ddPCR	BEAMing dPCR
Sensitivity	41%	29%	71%	71%
Specificity	100%	100%	83%	67%
Concordance with tumor T790M status	57%	48%	74%	70%

ARMS, amplification refractory mutation system; dPCR, digital polymerase chain reaction; ddPCR, Droplet Digital polymerase chain reaction; EGFR, epidermal growth factor receptor; PCR, polymerase chain reaction.

1. Mellert, Hestia, et al. "Development and Clinical Utility of a Blood-Based Test Service for the Rapid Identification of Actionable

- Mutations in Non–Small Cell Lung Carcinoma." The Journal of Molecular Diagnostics 19.3 (2017): 404-416.
- Thress, Kenneth S., et al. "EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291." Lung Cancer 90.3 (2015): 509-515

Overview of assay workflow

In brief, the method involves, extraction of circulating tumor DNA(ctDNA) from blood plasma, and partitioning the DNA samples such that individual DNA templates can be amplified and assessed in individual droplets. By preparing tens of thousands of these droplets for each blood sample, rare mutant-positive DNA templates can be detected reliably without the interference of more common DNA templates without mutations.

Specimen requirements and format

37 Jalan Pemimpin #08-05 Mapex Singapore 577177 T: +65 6251 0136 f: +65 6251 0132